Authors
Litvinov A. S.
MD, PhD, Leading Scientific Specialist1; Deputy General Director for Medical Issues2
Savin A. V.
Leading Specialist3, Nephrologist4
Kuhtina A. A.
Resident Physician, Chair for Outpatient Therapy5
1 - «Metaco LLP», London, United Kingdom
2 - LLC «Agidel Medical center», Ufa, Russia
3 - YugEkoService LLC, Rostov-on-Don, Russia
4 - Limited Partnership «Harmony Medical Clinic», Rostov-on-Don, Russia
5 - Moscow State Medical and Dental University Named After A. I. Evdokimov, Moscow, Russia
Corresponding Author
Litvinov S. Alexander; e-mail: dirge@yandex.ru
Conflict of interest
None declared.
Funding
The study had no sponsorship.
Abstract
In this article we discussed the mechanisms of infection with SARS-CoV-2, intercellular interactions and ways of infection transmission. We considered the epidemiology of COVID-19 and covered in detail the prospects of involving other organs and systems other than the respiratory system in maintaining the viral load. Problems of immune protection of the human body during infection with SARS-CoV-2 have been identified. Clinical parallels with progenitor viruses, namely SARS-CoV-1 and MERS-CoV, have been drawn. Risk factors for SARS-CoV-2 infection were identified, which allow predicting the course and probable outcomes of COVID-19.
Key words
SARS-CoV-2, COVID-19, angiotensin converting enzyme 2, angiotensin 1-7, transmembrane protease, serine 2, target cell, type 2 alveocyte
DOI
References
1. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016; (14): 523-534. doi: 10.1038/nrmicro.2016.81
2. Chen Y, Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 2020; 92(4): 418-423. doi: 10.1002/jmv.25681
3. Zhu N. A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med. 2019; 382: 727-733. doi: 10.1056/NEJMoa2001017
4. Lu R. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; doi: 10.1016/S0140-6736(20)30251-8
5. Ji W., Wang W., Zhao X., Zai J., Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol. 2020; (92): 433-440. doi: 10.1002/jmv.25682.
6. Rice G.I., Thomas D.A., Grant P.J., Turner A.J., Hooper N.M. Evaluation of angiotensin converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004; (383): 45-51.
7. Turner A.J., Hooper N.M. The angiotensin-converting enzyme gene family: genomics and pharmacology. TIPS. 2002; (23): 177-183.
8. Chappell M.C. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7) mas receptor axis; more than regulation of blood pressure? Hypertension. 2007; (50): 596-599.
9. Chappell M.C., Modrall J.G., Diz D.I., Ferrario C.M. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. In: Suzuki H., Saruta T., editors. Kidney and Blood Pressure Regulation. Basel; Karger: 2004.
10. Chappell M.C., Pirro N.T., Sykes A., Ferrario C.M. Metabolism of angiotensin-(1-7) by angiotensin converting enzyme. Hypertension. 1998; (31): 362-367.
11. Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J., Godbout K., Parsons T., Baronas E., Hsieh F., Acton S., Patane M., Nichols A., Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002; (277): 14838-14843.
12. Oudit G.Y., Herzenberg A.M., Kassiri Z., Wong D., Reich H., Khokha R., Crackower M.A., Backx P.H., Penninger J.M., Scholey J.W. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Patho. 2006; (168): 1808-1820.
13. Ye M., Wysocki J., William J., Soler M.J., Cokic I., Batlle D. Glomerular localization and expression of angiotension-converting enzyme 2 and angiotensin-converting enzyme: Implications for albuminemia in diabetes. J Am Soc Nephrol. 2006; (17): 3067-3075.
14. Pendergrass K.D., Pirro N.T., Westwood B.M., Ferrario C.M., Brosnihan K.B., Chappell M.C. Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol. 2008; (295): 10-20.
15. Prieto M.C., Gonzalez-Villalobos R.A., Botros F.T., Martin V.L., Pagan J., Satou R., Lara L.S., Feng Y., Fernandes F.B., Kobori H., Casarini D.E., Navar L.G. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. Am J Physiol Renal Physiol. 2011; (300): 749-755.
16. Allred A.J., Diz D.I., Ferrario C.M., Chappell M.C. Pathways for angiotensin-(1-7) metabolism in pulmonary and renal tissues. Am J Physiol. 2000; (279): 841-850.
17. Chappell M.C., Allred A.J., Ferrario C.M. Pathways of angiotensin-(1-7) metabolism in the kidney. Nephrol Dial Transplant. 2001; (16): 22-26.
18. Chappell M.C., Gomez M.N., Pirro N.T., Ferrario C.M. Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition. Hypertension. 2000; (35): 348-352.
19. Velez J.C., Ryan K.J., Harbeson C.E., Bland A.M., Budisavljevic M.N., Arthur J.M., Fitzgibbon W.R., Raymond J.R., Janech M.G. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension. 2009; (53): 790-797.
20. Yamamoto K., Chappell M.C., Brosnihan K.B., Ferrario C.M. In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertension. 1992; (19): 692-696.
21. Sampaio W.O., dos Santos R.A., Faria-Silva R., de Mata Machado L.T., Schiffrin E.L., Touyz R.M. Angiotensin-(1-7) through receptor mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007; (49): 185-192.
22. Weiss D., Kools J.J., Taylor W.R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in ApoE-deficient mice. Circulation 2001; (103): 448-454.
23. Su Z., Zimpelmann J., Burns K.D. Angiotensin-(1-7) inhibits angiotensin II stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006; (69): 2212-2218.
24. Iyer S.N., Yamada K., Diz D.I., Ferrario C.M., Chappell M.C. Evidence that prostaglandins mediate the antihypertensive actions of angiotensin (1-7) during chronic blockade of the renin angiotensin system. J Cardiovasc Pharmacol. 2000; (36): 109-117.
25. Giani J.F., Munoz M.C., Pons R.A., Cao G., Toblli J.E., Turyn D., Dominici F.P. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2011; (300): 272-282.
26. Yamamoto K., Chappell M.C., Brosnihan K.B., Ferrario C.M. In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertension. 1992; (19): 692-696.
27. Zhang J., Noble N.A., Border W.A., Huang Y. Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am J Physiol Renal Physiol. 2010; (298): 579-588.
28. Soler M.J., Wysocki J., Ye M., Lloveras J., Kanwar Y., Batlle D. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin induced diabetic mice. Kid Int. 2007; (72): 614-623.
29. Tikellis C., Bialkowski K., Pete J., Sheehy K., Su Q., Johnston C., Cooper M., Thomas M. ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes. Diabetes 2008; (57): 1018-1025.
30. Wong D.W., Oudit G.Y., Reich H., Kassiri Z., Zhou J., Liu Q.C., Backx P.H., Penninger J.M., Herzenberg A.M., Scholey J.W. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol. 2007; (171): 438-451.
31. Glowacka I., Bertram S., Muller M.A., Allen P., Soilleux E., Pfefferle S., Steffen I., Tsegaye T.S., He Y., Gnirss K., Niemeyer D., Schneider H., Drosten C., Pohlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 2011; (85): 4122-4134.
32. Bertram S., Dijkman R., Habjan M., Heurich A., Gierer S., Glowacka I., Welsch K., Winkler M., Schneider H., Hofmann-Winkler H., Thiel V., Pohlmann S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol. 2013; (87): 6150-6160.
33. Abe M., Tahara M., Sakai K., Yamaguchi H., Kanou K., Shirato K., Kawase M., Noda M., Kimura H., Matsuyama S., Fukuhara H., Mizuta K., Maenaka K., Ami Y., Esumi M., Kato A., Takeda M. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J. Virol. 2013; (87): 11930-11935.
34. Shirato K., Kawase M., Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 2013; (87): 12552-12561.
35. Heurich A., Hofmann-Winkler H., Gierer S., Liepold T., Jahn O., Poehlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2014; (88): 1293-1307.
36. Vaarala M.H., Porvari K.S., Kellokumpu S., Kyllonen A.P., Vihko P.T. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J. Pathol. 2001; (193): 134-140.
37. Chen Y.W., Lee M.S., Lucht A., Chou F.P., Huang W., Havighurst T.C., Kim K., Wang J.K., Antalis T.M., Johnson M.D., Lin C.Y. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am. J. Pathol. 2010; (176): 2986-2996.
38. Donaldson S.H., Hirsh A., Li D.C., Holloway G., Chao J., Boucher R.C., Gabriel S.E. Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem. 2002; (277): 8338-8345.
39. Chen Y.W., Lee M.S., Lucht A., Chou F.P., Huang W., Havighurst T.C., Kim K., Wang J.K., Antalis T.M., Johnson M.D., Lin C.Y. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol. 2010; (176): 2986-2996.
40. Wilson S., Greer B., Hooper J., Zijlstra A., Walker B., Quigley J., Hawthorne S. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J. 2005; (388): 967-972.
41. Bottcher-Friebertshauser E., Freuer C., Sielaff F., Schmidt S., Eickmann M., Uhlendorff J., Steinmetzer T., Klenk H.D., Garten W. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol. 2010; (84): 5605-5614.
42. Bottcher E., Matrosovich T., Beyerle M., Klenk H.D., Garten W., Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006; (80): 9896-9898.
43. Shulla A., Heald-Sargent T., Subramanya G., Zhao J., Perlman S., Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 2011; (85): 873-882.
44. Hamming I., Timens W., Bulthuis M.L. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; (203): 631-637. Available at: www.onlinelibrary.wiley.com/doi/abs/10.1002/path.1570/
45. Sims A.C., Baric R.S., Yount B. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol. 2005; (79): 15511-15524. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316022/
46. Vieira Braga F.A., Kar G., Berg M. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019; (25): 1153-1163. Available at: https://www.nature.com/articles/s41591-019-0468-5
47. Xu Y., Mizuno T., Sridharan A. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016; (1): 134-139.
48. Yun Chen, Yao Guo, Yihang Pan, Zhizhuang Joe Zhao. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020; 525 (1): 135-140. doi: 10.1016/j.bbrc.2020.02.071
49. Hashimoto T., Perlot T., Rehman A., Trichereau J., Ishiguro H., Paolino M., Sigl V., Hanada T., Hanada R., Lipinski S., Wild B., Camargo S.M., Singer D., Richter A., Kuba K., Fukamizu A., Schreiber S., Clevers H., Verrey F., Rosenstiel P., Penninger J.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012; 487(7408): 477–481. doi: 10.1038/nature11228
50. Hui D.S.C., Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect. Dis. Clin. 2019; (33): 869-889. Available at: https://www.sciencedirect.com/science/article/pii/S0891552019300571?via%3Dihub // Ho
51. lshue M.L., DeBolt C., Lindquist S. First case of 2019 novel coronavirus in the United States. N Engl J Med; 2020; Jan 31. Available at: https://www.nejm.org/doi/full/10.1056/NEJMoa2001191?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
52. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323 (11): 1061-1069. doi: 10.1001/jama.2020.1585
53. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; doi: 10.1016/S0140-6736(20)30183-5.
54. Guan W., Ni Z., Hu Y., Liang W., Ou C., He H., Liu L., Shan H., Lei C., Hui D.S.C., Du B., Li L., Zeng G., Yuen K.Y., Chen R., Tang C., Wang T., Chen P., Xiang J., Li S., Wang J., Liang Z., Peng Y., Wei L., Liu Y., Hu Y., Peng P., Wang J., Liu J., Chen Z., Li G., Zheng Z., Qiu S., Luo J., Ye C., Zhu S., Zhong N. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv. 2020; doi: 10.1101/2020.02.06.20020974
55. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan COVID-19. medRxiv. 2020; doi: 10.1101/2020.01.26.919985
56. Xu X. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020; doi: 10.1007/s11427-020-1637-5.
57. Zou X. The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection. Front. Med. 2020; Available at: www.journal.hep.com.cn/fmd/EN/10.1007/s11684-020-0754-0
58. Zhou P. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; (579): 270-273. doi: 10.1038/s41586-020-2012-7.
59. Li W. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; (426): 450-454. doi: 10.1038/nature02145.
60. Hofmann H. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl Acad. Sci. USA. 2005; (102): 7988-7993. doi: 10.1073/pnas.0409465102
61. Zhao Y. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Preprint. 2020; Available at: www.biorxiv.org/content/10.1101/2020.01.26.919985v1
62. Zhang, H. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. Preprint. 2020; Available at: https://www.biorxiv.org/content/10.1101/2020.01.30.927806v1
63. Chai X. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. Preprint. 2020; Available at: www.biorxiv.org/content/10.1101/2020.02.03.931766v1
64. Crackower M.A., Sarao R., Oudit G.Y., Yagil C., Kozieradzki I., Scanga S.E., Oliveira-dos-Santos A.J., da Costa J., Zhang L., Pei Y., Scholey J., Ferrario C.M., Manoukian A.S., Chappell M.C., Backx P.H., Yagil Y., Penninger J.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002; 417(6891): 822-828. doi: 10.1038/nature00786
65. Danilczyk U., Sarao R., Remy C., Benabbas C., Stange G., Richter A., Arya S., Pospisilik J.A., Singer D., Camargo S.M., Makrides V., Ramadan T., Verrey F., Wagner C.A., Penninger J.M. Essential role for collectrin in renal amino acid transport. Nature 2006; 444(7122): 1088-1091. doi: 10.1038/nature05475.
66. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., Zhuang H., Wu B., Zhong H., Shao H., Fang W., Gao D., Pei F., Li X., He Z., Xu D., Shi X., Anderson V.M., Leong A.S. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005; 202(3): 415-424. doi: 10.1084/jem.20050828.
67. Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., Wang H., Shen H., Qiu L., Li Z., Geng J., Cai J., Han J., Li X., Kang W., Weng D., Liang P., Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004; (203): 622-630. doi: 10.1002/path.1560
68. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J Pathol. 2004; (203): 631-663. doi: 10.1002/path.1570.
69. Ren X. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. J. Gen. Virol. 2006; (87): 1691-1695. doi: 10.1099/vir.0.81749-0
70. Hao Xu, Liang Zhong, Jiaxin Deng, Jiakuan Peng, Hongxia Dan, Xin Zeng, Taiwen Li, Qianming Chen. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020; (12): 8.
71. Al-Tawfiq J.A., Zumla A., Memish Z.A. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Travel. Med. Infect. Dis. 2014; (12): 422-428. doi: 10.1016/j.tmaid.2014.06.007.
72. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; (12): 23-28. doi: 10.1038/s41586-020-2012-7
73. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; (395): 497-506. doi: 10.1016/S0140-6736(20)30183-5
74. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol. 2020; (46): 35–36. doi: 10.1128/JVI.00127-20
75. Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016; (3): 237-261.
76. Simmons G., Zmora P., Gierer S., Heurich A., Pohlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013; (100): 605-614.
77. Matsuyama, S. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 2010; (84): 12658-12664.
78. Bertram S. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol. 2011; (85): 13363-13372.
79. Belouzard S., Chu V.C., Whittaker G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl Acad. Sci. USA 2009; (106): 5871-5876.
80. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005; (309): 1864-1868.
81. Millet J.K., Whittaker G.R. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015; (202): 120-134.
82. Woodward Davis A.S., Roozen H.N., Dufort M.J., DeBerg H.A., Delaney M.A., Mair F., Erickson J.R., Slichter C.K., Berkson J.D., Klock A.M., Mack M., Lwo Y., Ko A. The human tissue-resident CCR5(+) T cell compartment maintains protective and functional properties during inflammation. Sci Transl Med. 2019; 11(521): 871-878. doi: 10.1126/scitranslmed.aaw8718
83. Yao X.H., Li T.Y., He Z.C. A pathological report of three COVID-19 cases by minimally invasive autopsies. Nature 2020; (24): 132–133. doi: 10.3760/cma.j.cn112151-20200312-00193. 32172546
84. Diao B., Feng Z., Wang C., Wang H., Liu L., Wang C. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MedRxiv. 2020; (200): 31-36.
85. Xu D., Zhang H., Gong H., Chen J., Ye J., Meng T. Identification of a Potential Mechanism of Acute Kidney Injury During the Covid-19 Outbreak: A Study Based on Single-Cell Transcriptome Analysis. Preprints. 2020 Feb. Available at: www.preprints.org/manuscript/202002.0331/v1
86. Haddadi S., Vaseghi-Shanjani M., Yao Y., Afkhami S., D'Agostino M.R., Zganiacz A., Jeyanathan M., Xing Z. Mucosal-Pull Induction of Lung-Resident Memory CD8 T Cells in Parenteral TB Vaccine-Primed Hosts Requires Cognate Antigens and CD4 T Cells. Front Immunol. 2019; (10): 2075. doi: 10.3389/fimmu.2019.02075