Authors
Andreevskaya S. G.
MD, PhD, Senior Researcher, Laboratory for Indication and Ultrastructural Analysis of Microorganisms1
Shevlyagina N. V.
MD, PhD, Senior Researcher, Laboratory for Indication and Ultrastructural Analysis of Microorganisms1; Bacteriologist2
Pseunova J. R.
Head, Department for Bacteriology2
1 - N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia
2 - Gemotest Laboratory Ltd, Moscow, Russia
Corresponding author
Shevlyagina Natalia; email: microbanatomy@gmail.com
Conflict of interest
None declared.
Funding
The study had no sponsorship.
Abstract
The search for new methods for identifying the pathogen in biological material, including microscopic, remains relevant. The study of ultrastructural changes of microorganisms as a result of exposure to various groups of antibiotics is important, because the morphology of the bacterial cell varies considerably depending on the conditions of cultivation. The purpose of the study: 1. To identify the nature of changes in the ultrastructure of preserved bacterial cells of S. aureus, cultivated in the presence of antibiotics. 2. To determine the viability of that part of the population of S. aureus, which remained exposed to suppressive concentrations of antibacterial drugs. 3. To determine whether the ultrastructural changes of the reference strain S. aureus ATCC 25923 in the proposed conditions completely reflect the nature of these changes for strains isolated from clinical material. Materials and methods. Three strains of S. aureus isolated from biological material and the reference strain S. aureus ATCC 25923 were used to investigate the S. aureus ultrastructure. The analysis was carried out on the basis of data obtained using scanning electron microscopy (SEM). In the process of sample preparation, the technique of imprinting bacteria from agarized nutrient medium was applied. Results and conclusions. The most common feature for the strains of clinical isolates of S. aureus was the formation of a large number of bacterial cells of a specific disc-shaped form in zones of influence of bacteriostatic antibiotics. In terms of the use of bactericidal drugs, part of the population remained spherical, the other part had irregular contours. Changes in the size of bacterial cells in growth suppression zones were multidirectional. Cultivation of bacteria under conditions of exposure to suppressive concentrations of antibacterial drugs stimulated the production of exocellular matrix. The ultrastructural changes of phenotypic variability of the reference strain S. aureus ATCC 25923 did not fully correspond to changes in the morphology of the bacterial cells of the strains of clinical isolates. The viability of bacteria remaining in the zones of growth suppression has been confirmed in all cases of antibiotic exposure, except gentamicin. Thus, the study revealed the nature of changes in the ultrastructure of S. aureus as manifestations of phenotypic variability of microorganisms in response to the presence of antibacterial drugs with different mechanisms of action.
Key words
ultrastructure of S. aureus, antibacterial drugs, scanning electron microscopy, phenotypic variability of S. aureus, biofilm
DOI
References
1. Afanas'ev M.V., Mironova L.V., Basov E.A., Ostyak A.S., Kulikalova E.S., Urbanovich L.Ya., Balakhonov S.V. MALDI-TOF mass-spektrometricheskiy analiz v uskorennoy identifikatsii mikroorganizmov roda Vibrio. [MAL'DI-TOF mass spectrometry analysis in the accelerated identification of microorganisms of the genus Vibrio]. Molekulyarnaya genetika, mikrobiologiya i virusologiya. [Molecular genetics, microbiology and virology].2014; 3:22-30. (In Russ.)
2. Klinicheskie rekomendatsii opredeleniya chuvstvitel'nosti mikroorganizmov k antimikrobnym preparatam (versiya 2015-02). [Determination of the sensitivity of microorganisms to antimicrobial drugs (version 2015-02)]. (In Russ.)
3. Methodological guidelines 4.2.1890-04. (In Russ.)
4. Cohen N.R., Lobritz M.A., Collins J.J. Microbial persistence and the road to drug resistance. Cell Host & Microbe 2013; 13(6): 632-642.
5. Cosgrove S.E. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006; 42 (Suppl 2): 82-9.
6. Elliott G.R, Peterson P.K, Verburg H.A, Freiberg M.R, Hoidal J.R, Quie P.G. Influence of subinhibitory concentrations of penicillin, cephalothin, and clindamycin on Staphylococcus aureus growth in human phagocytic cells. Antimicrob Agents Chemother. 1982; Nov.22(5): 781-784.
7. Elliott T.S., Greenwood D., Rodgers F.G., O’Grady F. The response of Staphylococcus aureus to benzylpenicillin. Br J ExpPathol. 1979; Feb. 60 (1):14-23.
8. Fauvart M., De Groote V.N., Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. Journal of Medical Microbiology 2011; 60: 699-709.
9. Gefen, O., Balaban, N.Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev.2009; 33: 704-717. doi: 10.1111/j.1574-6976.2008.00156.x
10. Hatano K., Nishino T. Morphological alterations of Staphylococcus aureus and Streptococcus pyogenes exposed to cefdinir, a new oral broad-spectrum cephalosporin. Chemotherapy 1994; 40 (2): 73-9.
11. Hoffman L.R., D`Argenio D.A., MacCoss M.J., Zhang Z., Jones R.A, Miller S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. 2005; Nature 436: 1171-1175.
12. Kaplan JB. Antibiotic-induced biofilm formation. Int. J. Artiff. Organs 2011; Sept 34(9): 737-51.
13. Kell D., Potgieter M., Pretorius E. Individuality, phenotypic differentiation, dormancy and ‘persistence’ in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000 Res. 2015; 4: 179. Published 2015 Sep 7 doi: 10.12688/f1000research.6709.2
14. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2007; 5: 48–56. doi: 10.1038/nrmicro1557
15. Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008; 322:107-31.
16. Lewis K. Persister cells. Annu Rev Microbiol. 2010; 64:357-72.
17. Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol. 2012; (211):121-33.
18. Lowy F.D. Staphylococcus aureus infections. N Engl J Med. 1998; 339 (8): 520-32
19. Munita J.M., Arias C.A. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016; 4 (2) doi: 10.1128/microbiolspec.VMBF-0016-2015
20. Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018; 9: 2928. doi:10.3389/fmicb.2018.02928
21. Rachid S., Ohlsen K., Witte W., Hacker J., Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000; 44: 3357-3363.
22. Sianglum W., Srimanote P., Wonglumsom W., Kittiniyom K., Voravuthikunchai S.P. Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate. PLoS One. 2011;6(2): e16628. doi: 10.1371/journal.pone.0016628
23. Stapleton P.D., Taylor P.W. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. SciProg. 2002; 85(Pt 1):57-72.
24. Tong S.Y., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603-61. doi: 10.1128/CMR.00134-14
25. Zhu X, Liu D, Singh A.K., et al. Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence. Front Microbiol. 2018; 9:1352. Published 2018 Jul 2. doi: 10.3389/fmicb.2018.01352