AboutContactsEditorial StaffEditorial CouncilArchiveFor AuthorsFor Reviewers

Prediction of the Dynamics of Polymorbid Pathology

Journal «MEDICINA» ¹ 1, 2023, pp.56-76 (Research)

Authors

Fedorovitch G. V.
Doctor of Physics and Mathematics, Technical Director1

1 - LLC «NTM-Zashchita» Moscow, Russian Federation

Corresponding Author

Fedorovitch Gennady; e-mail: fedorgv@gmail.com.

Conflict of interest

None declared.

Funding

The study had no sponsorship.

Abstract

A unified methodological approach is proposed to describe the nosological structure of polymorbidity, to systematize its clinical and epidemiological properties and patterns, as well as for the phenomena associated with it. A probabilistic model is used to describe at the phenomenological level the picture of the formation of the resulting statistics of polymorbidity in a population. The ergodic hypothesis underlies the model of morbidity in the population. The results have the meaning of ensemble averages. The microscopic (internal) states of the system can take on all possible values compatible with the given values of the macroscopic (external) parameters. Of all the possible microscopic states, those that have the highest statistical weight are realized with the maximum probability. The real system defines the block diagram of the model. Those aspects of the system that correspond to the objectives of the study are displayed. The direct task is to draw up an epidemiological picture according to the clinical parameters of the disease. The inverse task is the formation of an individual (clinical) description of nosology based on epidemiological (population average) data. A special state probability linear regression method is proposed to compare theoretical results with observations. The test allows estimating the parameters of the real distribution. The adequacy of the model is checked when it is «fitted» to the observational data. The fitting parameters rationally characterize polymorbid pathology – the structure and incidence rate.

Key words

polymorbidity, modeling, statistics, ergodic hypothesis, linear regression

DOI

References

1. Babanskaya E.B., Men'shikova L.V., Men'shikov M.L. Klinicheskaya harakteristika pacientov s arterial'noj gipertenziej v ambulatornoj praktike vracha-kardiologa. [The Clinical Characteristics of Patients with Arterial Hypertension in Cardiologist Ambulatory Practice.] Medicina [Medicine] 2017; 5(4): 45-57, doi: 10.29234/2308-9113-2017-5-4-45-57. (In Russ.)

2. Lazebnik L.B., Konev Yu.V., Efremov L.I., Osnovnaya problema geriatrii – mnozhestvennost' boleznej u pozhilogo bol'nogo. [The principal problem of geriatrics is the multiplicity of diseases in an elderly patient.] Klinicheskaya gerontologiya [Clinical gerontology] 2019; 24(1-2): 4-9, doi: 10.26347/167-2499201901-02004-009. (In Russ.)

3. Larina V.N., Samorodskaya I.V., Glibko K.V., Golovko M.G. Kompleksnaya patologiya: terminologiya, ocenka tyazhesti sostoyaniya pacientov i vozmozhnyj podhod k ih vedeniyu. [Complex pathology: terminology, assessment of the severity of the condition of patients and a possible approach to their maintenance.] Klinicheskaya gerontologiya [Clinical gerontology] 2019; 25(1-2): 49-57, doi: 10.26347/1607-2499201901-02049-057. (In Russ.)

4. Boyd C.M., Darer J., Boult C., Clinical practice guidelines and quality of care for older patients. JAMA 2005; 294(6): 716-724, doi: 10.1001/jama.294.6.716

5. Barnett K., Mercer S.W., Norbury M., Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 2012; 380(9836): 37-43. doi: 10.1016/S0140-6736(12)60240-2

6. Oganov R.G., Simanenkov V. I., Bakulin I. G., et al. Komorbidnaya patologiya v klinicheskoj praktike. Algoritmy diagnostiki i lecheniya. [Comorbid pathology in clinical practice. Diagnostic and treatment algorithms.] Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular therapy and prevention] 2019;18(1): 5-66, doi: 10.15829/1728-8800-2019-1-5-66 4. (In Russ.)

7. Fedorovich G.V. Racional'naya epidemiologiya professional'nyh zabolevanij (Modeli i metody). [Rational epidemiology of occupational diseases (models and methods).] Saarbrucken: Palmarium Academic Publishing, 2014. ISBN: 978-3-639-82722-4. (In Russ.)

8. Oganov R.G., Drapkina O.M. Polimorbidnost': Zakonomernosti formirovaniya i principy sochetaniya neskol'kih zabolevanij u odnogo pacienta. [Polymorbidity: patterns of formation and principles of combination of several diseases in one patient.] Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular therapy and prevention] 2016; 15(4): 4-9. doi: 10. 15829/1728-8800-2016-4-4-9. (In Russ.)

9. Tran J., Norton R., Conrad N., Rahimian F., Canoy D., Nazarzadeh M., et al. Patterns and temporal trends of comorbidity among adult patients with incident cardiovascular disease in the UK between 2000 and 2014: A population-based cohort study. PLoS Med 2018; 15(3): e1002513, doi: 10.1371/journal.pmed.1002513

10. Fedorovich G.V. Racional'naya diagnostika professional'nyh zabolevanij (Koncepcii i prilozheniya). [Rational diagnosis of occupational diseases (concepts and applications).] Saarbrucken: Palmarium Academic Publishing, 2021: ISBN: 978-620-2-38251-9. Russ.)

11. Popov S.V., Bokova S.I. Osobennosti polipatij u lic pozhilogo i starcheskogo vozrasta. Aktual'nye problemy polipatij v klinicheskoj i profilakticheskoj medicine. Sb. nauch. tr. [Features of polypathies in the elderly and senile age. Actual problems of polypathies in clinical and preventive medicine. Collection of scientific papers.] Chelyabinsk: Yuzhno-Ural'skij GMU, 2013. (In Russ.)

12. Shpagina L.N. Polipatii u shahterov s patologiej perifericheskoj nervnoj sistemy i kostno-myshechnoj sistemy: formirovanie i osobennosti struktury [Polypathies in miners with pathology of the peripheral nervous system and the musculoskeletal system: formation and structural features.] Fundamental'nye issledovaniya [Basic Research] 2012; (8-1): 190-192. (In Russ.)

13. Suvorov V.G. Mediko-biologicheskie osnovy ocenki sochetannogo vliyaniya proizvodstvennoj sredy i trudovogo processa na organizm cheloveka. [Medico-biological bases for assessing the combined impact of the production environment and the labor process on the human body.] Diss. na soiskanie uchenoj stepeni d.m.n. [Doctor of Medicine Thesis.] Ìoscow, 2004. (In Russ.)

14. Charlson M.E., Pompei P., Ales H.L. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Disease 1987; 40: 373-383.

15. Shamurova Yu.Yu., Kalev O.F., Bolotov A.A., Prazdnov A.S., Kolesnikova A.A. Problema polipatii v sel'skoj populyacii. [The problem of polypathy in the rural population.] Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education] 2012; (3): 38. (In Russ.)

16. Ar'ev A.L., Ovsyannikova N.A., Ar'eva G.T., Dzahova S.D., Havinson V.H. Polimorbidnost' v geriatrii. [Polymorbidity in geriatrics.] Prakticheskaya onkologiya [Practical Oncology] 2015; 16(3): 83-92. (In Russ.)

17. Petrik E.A. Osobennosti polimorbidnosti u somaticheskih bol'nyh. [Features of polymorbidity in somatic patients.] Avtoreferat diss. na soiskanie uchenoj stepeni k.m.n. [Author’s abstract, PhD Thesis.] Ìoscow, 2011. (In Russ.)

18. Tran J., Norton R., Conrad N., Rahimian F., Canoy D., Nazarzadeh M., Rahimi K. Patterns and temporal trends of comorbidity among adult patients with incident cardiovascular disease in the UK between 2000 and 2014: A population-based cohort study. PLoS Med. 2018; 15(3): e1002513? doi: 10.1371/journal.pmed.1002513

19. Butov A.A., Shabalin A.S., Kovalenko A.A. Matematicheskaya model' mnogostadijnogo stareniya adaptivnyh sistem. [Mathematical model of multi-stage aging of adaptive systems.] Fundamental'nye issledovaniya [Basic Research] 2015; (9-2): 219-222. Russ.)

20. Korn G.A., Korn T.M. Spravochnik po matematike dlya uchenyh i inzhenerov. [Handbook of Mathematics for Scientists and Engineers.] Ìoscow: Nauka, 1974. (In Russ.)