Authors
Korneva Yu. S.
MD, PhD, Assistant Professor, Chair for Pathological Anatomy13, Pathologist2
Borisenko M. B.
5th Year Student, Medical Faculty1
1 - I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russian Federation
2 - City Hospital No. 26, St. Petersburg, Russian Federation
3 - Smolensk State Medical University, Smolensk, Russian Federation
Corresponding Author
Korneva Yulia; e-mail: ksu1546@yandex.ru.
Conflict of interest
Authors have no conflict of interest.
Funding
The study had no sponsorship.
Abstract
The non-systematic literature review describes the mechanisms by which breastfeeding prevents the development of the metabolic syndrome and socially significant diseases associated with it: obesity, diabetes type 2 and atopic diseases. One of the mechanisms of metabolic programming is the effect of breast milk on the development of the infant's intestinal microbiota. Human milk oligosaccharides can stimulate the growth of commensal bacteria. Cytokines, secretory immunoglobulins, leukocytes, lactoferrin and lysozyme can prevent colonization by pathogenic microorganisms and prevent an increase in the permeability of the intestinal barrier, the absorption of bacterial metabolic products, including lipopolysaccharide, and the development of systemic inflammation, including inflammation adipose tissue. Polyunsaturated fatty acids from breast milk prevent adipocyte hypertrophy at an early age and the development of obesity in the adults. Adiponectin prevents insulin resistance, other hormones that are part of breast milk influence the eating habits of children and prevent weight gain in adulthood. The inclusion of breast milk components in artificial mixtures has the potential to prevent the development of many socially significant diseases.
Key words
breastfeeding, human milk, metabolic syndrome, microbiota, prebiotics, probiotics
DOI
References
1. Acevedo N., Alashkar Alhamwe B., Caraballo L., et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13(3): 724, doi:10.3390/nu13030724
2. Asakuma S., Yokoyama T., Kimura K., et al. Effect of Human Milk Oligosaccharides on Messenger Ribonucleic Acid Expression of Toll-like Receptor 2 and 4, and of MD2 in the Intestinal Cell Line HT-29. Journal of Applied Glycoscience 2010; 57(3): 177-183, doi:10.5458/jag.57.177
3. Badillo-Suárez P.A., Rodríguez-Cruz M., Nieves-Morales X. Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity. J Mammary Gland Biol Neoplasia 2017; 22(3): 171-191, doi: 10.1007/s10911-017-9382-y
4. Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., et al. Probiotic mechanisms of action. Ann Nutr Metab. 2012; 61(2): 160-74, doi: 10.1159/000342079
5. Boudry G., Charton E., Le Huerou-Luron I., et al. The Relationship Between Breast Milk Components and the Infant Gut Microbiota. Front Nutr. 2021; 8: 629740, doi: 10.3389/fnut.2021.629740
6. Cani P.D., Neyrinck A.M., Fava F., et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50(11): 2374-83, doi: 10.1007/s00125-007-0791-0
7. Carr L.E., Virmani M.D., Rosa F., et al. Role of Human Milk Bioactives on Infants' Gut and Immune Health. Front Immunol. 2021; 12: 604080, doi: 10.3389/fimmu.2021.604080
8. Chambers S.A., Townsend S.D. Like mother, like microbe: human milk oligosaccharide mediated microbiome symbiosis. Biochem Soc Trans. 2020; 48(3): 1139-1151, doi: 10.1042/BST20191144
9. Cukrowska B., Bierła J.B., Zakrzewska M., Klukowski M., Maciorkowska E. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life. Nutrients 2020; 12(4): 946, doi: 10.3390/nu12040946
10. Emani R., Alam C., Pekkala S., Zafar S., Emani M.R., Hänninen A. Peritoneal cavity is a route for gut-derived microbial signals to promote autoimmunity in non-obese diabetic mice. Scand J Immunol. 2015; 81(2): 102-9, doi: 10.1111/sji.12253
11. Gale C., Logan K.M., Santhakumaran S., Parkinson J.R., Hyde M.J., Modi N. Effect of breastfeeding compared with formula feeding on infant body composition: a systematic review and meta-analysis. Am J Clin Nutr. 2012; 95(3): 656-69, doi: 10.3945/ajcn.111.027284
12. Ghoshal S., Witta J., Zhong J., et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009 Jan; 50(1): 90-7, doi: 10.1194/jlr.M800156-JLR200
13. Ip S., Chung M., Raman G., et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep) 2007; (153):1-186.
14. Jackson C.M., Mahmood M.M., Järvinen K.M. Farming lifestyle and human milk: Modulation of the infant microbiome and protection against allergy. Acta Paediatr. 2022; 111(1): 54-58, doi: 10.1111/apa.16147
15. Kawai T., Autieri M.V., Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320(3):C375-C391, doi: 10.1152/ajpcell.00379.2020
16. Kozak L.P., Newman S., Chao P.M., et al. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PloS One 2010; 5(6): e11015, doi: 10.1371/journal.pone.0011015
17. Kumari M., Kozyrskyj A.L. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev. 2017;18(1):18-31, doi: 10.1111/obr.12484
18. Le Chatelier E., Nielsen T., Qin J., et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541-6, doi: 10.1038/nature12506
19. Lim H.J., Shin H.S. Antimicrobial and Immunomodulatory Effects of Bifidobacterium Strains: A Review. J Microbiol Biotechnol. 2020; 30(12): 1793-1800, doi: 10.4014/jmb.2007.07046
20. Liu S. da Cunha A.P., Rezende R.M., Cialic R., et al. The Host Shapes the Gut Microbiota via Fecal MicroRNA. Cell Host Microbe 2016; 19(1): 32-43, doi: 10.1016/j.chom.2015.12.005
21. Lodge C.J., Tan D.J., Lau M.X., et al. Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta Paediatr. 2015; 104(467): 38-53, doi: 10.1111/apa.13132
22. Lonnerdal B. Bioactive proteins in human milk: mechanisms of action. J Pediatr. 2010; 156(2 Suppl): 26-30, doi: 10.1016/ j.jpeds.2009.11.017
23. Moubareck C.A. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13(4): 1123. doi: 10.3390/nu13041123
24. Newburg D.S., Walker W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res. 2007; 61(1): 2-8, doi: 10.1203/01.pdr.0000250274.68571.18
25. Newburg D.S., Woo J.G., Morrow A.L. Characteristics and potential functions of human milk adiponectin. J Pediatr 2010; 156: 41-46.
26. Palmeira P., Carneiro-Sampaio M. Immunology of breast milk. Rev Assoc Med Bras (1992) 2016; 62(6): 584-593, doi: 10.1590/1806-9282.62.06.584
27. Rudolph M.C., Young B.E., Lemas D.J., et al. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int J Obes (Lond) 2017; 41(4): 510-517, doi: 10.1038/ijo.2016.211
28. Savino F., Liguori S.A., Fissore M.F., Oggero R. Breast milk hormones and their protective effect on obesity. Int J Pediatr Endocrinol. 2009; 2009:327505, doi: 10.1155/2009/327505
29. Tan J., McKenzie C., Vuillermin P.J., et al. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Rep 2016; 15: 2809-2824.
30. Thai J.D., Gregory K.E. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients 2020; 12(2): 581, doi: 10.3390/nu12020581
31. Ueno H., Sato T., Yamamoto S., et al. Randomized, double-blind, placebo-controlled trial of bovine lactoferrin in patients with chronic hepatitis C. Cancer Sci. 2006; 97(10): 1105-1110, doi: 10.1111/j.1349-7006.2006.00274.x
32. van Esch B.C.A.M., Porbahaie M., Abbring S., Garssen J., et al. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol. 2020; 11: 2141, doi: 10.3389/fimmu.2020.02141
33. Ward R.E., Niñonuevo M., Mills D.A., Lebrilla C.B., German J.B. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006; 72(6): 4497-9. doi: 10.1128/AEM.02515-05
34. Wells J.C. The programming effects of early growth. Early Hum Dev. 2007; 83(12): 743-8 doi: 10.1016/j.earlhumdev.2007.09.002
35. Xu L., Lochhead P., Ko Y., Claggett B., Leong R.W., Ananthakrishnan A.N. Systematic review with meta-analysis: breastfeeding and the risk of Crohn's disease and ulcerative colitis. Aliment Pharmacol Ther. 2017;46(9):780-789, doi: 10.1111/apt.14291
36. Yu J.C., Khodadadi H., Malik A., Davidson B., Salles É.D.S.L., Bhatia J., Hale V.L., Baban B. Innate Immunity of Neonates and Infants. Front Immunol. 2018; 9: 1759, doi: 10.3389/fimmu.2018.01759
37. Ziegler E.E. Growth of breast-fed and formula-fed infants. Nestle Nutr Workshop Ser Pediatr Program 2006; 58: 51-9; discussion 59-63, doi: 10.1159/000095010