Authors
Sinyakin I. A.
6th-year Student, Faculty of Medicine1
Shestakova M. A.
6th-year Student, Faculty of Medicine1
Beshlyaga O. Y.
6th-year Student, Faculty of Medicine1
Batalova T. A.
Doctor of Biology, Head, Chair for Physiology and Pathophysiology1
1 - Amur State Medical Academy of the Ministry of Health of Russia, Blagoveshchensk, Russian Federation
Corresponding Author
Sinyakin Ivan Alekseevich; e-mail: sinyakinscience2000@vk.com
Conflict of interest
The authors declare no conflict of interest.
Funding
The study had no sponsorship.
Abstract
Objective. To determine the pathologic role of highly dispersed e-cigarette aerosol on lung cells, respiratory epithelium, and the immune system. Results. A systematic analysis of scientific literature in the databases: PubMed, ResearchGate, Medscape, and Cochrane Library was performed. The search was conducted using the following keywords: e-cigarette, vape, juul, lung, airway, respiratory, respiratory, cough, methacholine, nasal, alveoli, immune, bronchial, tracheal, bronchoalveolar, nicotine, propylene glycol, vegetable glycerol, macrophages, epithelium, spirometry and SPF1. Based on the literature review, the following conclusion was reached: studies show measurable adverse biological effects on the bronchopulmonary apparatus in humans, animals, and in vitro. The pathologic effects of e-cigarettes have similarities to the effects of tobacco smoke on the pulmonary parenchyma. Conclusion. Analysis of the literature makes it possible to come to the conclusion that current knowledge of these pathologic effects is insufficient to determine whether exposure to e-cigarettes is less pathologic for the respiratory system than exposure to combustible tobacco products.
Key words
electronic cigarettes, vapes, high-disperse aerosol, lung cancer, pneumonitis
DOI
References
1. Outbreak of lung injury associated with the use of e-cigarette, or vaping, products. Center for Disease Control and Prevention. 2019. Available at: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html. Accessed: 20.03.2020.
2. Eaton D.L., Kwan L.Y., Stratton K., eds. Public Health Consequences of E-Cigarettes. National Academies Press, 2018.
3. Ahluwalia I.B., Smith T., Arrazola R.A., et al. Current Tobacco Smoking, Quit Attempts, and Knowledge About Smoking Risks Among Persons Aged ≥15 Years – Global Adult Tobacco Survey, 28 Countries, 2008-2016. MMWR Morb Mortal Wkly Rep 2018; 67: 1072-1076, doi: 10.15585/mmwr.mm6738a7
4. Wang T.W., Asman K., Gentzke A.S., et al. Tobacco Product Use Among Adults – United States, 2017. MMWR Morb Mortal Wkly Rep 2018; 67: 1225-1232, doi: 10.15585/mmwr.mm6744a2
5. Gottlieb M.A. Regulation of E-Cigarettes in the United States and Its Role in a Youth Epidemic. Children (Basel) 2019; 6: E40, doi: 10.3390/children6030040
6. Gambarian M.G. Vsya pravda ob elektronnyh sigaretah: rossijskaya real'nost'. Chast' I. Elektronnye sigarety – ugroza dlya lyudej i antitabachnoj politiki v Rossii. Aktual'nost' pravovogo regulirovaniya. [The whole truth of electronic cigarettes: the Russian reality. Part I. Electronic cigarettes a threat to people and Tobacco control policy in Russia. Urgency for legal regulation.] Profilakticheskaya Meditsina [Preventative medicine] 2019; 22(5): 7‑15, doi: 10.17116/profmed2019220517 (In Russ.)
7. Salagaj O.O., Antonov N.S., Saharova G.M. Analiz struktury i dinamiki potrebleniya tabaka i nikotinsoderzhashchej produkcii v Rossijskoj Federacii v 2019-2022 gg. [Analysis of the structure and dynamics of tobacco and nicotine-containing products consumption in the Russian Federation in 2019-2022.] Profilakticheskaya Meditsina [Preventative medicine] 2022; 25(9): 15-23, doi: 10.17116/profmed20222509115 (In Russ.)
8. Hua M., Alfi M., Talbot P. Health-related effects reported by electronic cigarette users in online forums. J Med Internet Res 2013; 15: e59, doi: 10.2196/jmir.2324
9. Wang M.P., Ho S.Y., Leung L.T., Lam T.H. Electronic Cigarette Use and Respiratory Symptoms in Chinese Adolescents in Hong Kong. JAMA Pediatr 2016; 170: 89-91, doi: 10.1001/jamapediatrics.2015.3024
10. McConnell R., Barrington-Trimis J.L., Wang K., et al. Electronic Cigarette Use and Respiratory Symptoms in Adolescents. Am J Respir Crit Care Med 2017; 195: 1043-1049, doi: 10.1164/rccm.201604-0804OC
11. Cho J.H., Paik S.Y. Association between Electronic Cigarette Use and Asthma among High School Students in South Korea. PLoS One 2016; 11: e0151022, doi: 10.1371/journal.pone.0151022
12. Wills T.A., Pagano I., Williams R.J., Tam E.K. E-cigarette use and respiratory disorder in an adult sample. Drug Alcohol Depend 2019; 194: 363-370, doi: 10.1016/j.drugalcdep.2018.10.004
13. Hedman L., Backman H., Stridsman C., et al. Association of Electronic Cigarette Use with Smoking Habits, Demographic Factors, and Respiratory Symptoms. JAMA Netw Open 2018; 1: e180789, doi: 10.1001/jamanetworkopen.2018.0789
14. Wang J.B., Olgin J.E., Nah G., et al. Cigarette and e-cigarette dual use and risk of cardiopulmonary symptoms in the Health eHeart Study. PLoS One 2018;13:e0198681, doi: 10.1371/journal.pone.0198681
15. Cibella F., Campagna D., Caponnetto P., et al. Lung function and respiratory symptoms in a randomized smoking cessation trial of electronic cigarettes. Clin Sci (Lond) 2016; 130: 1929-1937, doi: 10.1042/CS20160268
16. Polosa R., Morjaria J.B., Caponnetto P., et al. Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. Discov Med 2016; 21: 99-108.
17. Veldheer S., Yingst J., Midya V., et al. Pulmonary and other health effects of electronic cigarette use among adult smokers participating in a randomized controlled smoking reduction trial. Addict Behav 2019;91:95-101, doi: 10.1016/j.addbeh.2018.10.041
18. Walele T., Bush J., Koch A., Savioz R., Martin C., O’Connell G. Evaluation of the safety profile of an electronic vapour product used for two years by smokers in a real-life setting. Regul Toxicol Pharmacol 2018; 92: 226-238.
19. D’Ruiz C.D., O’Connell G., Graff D.W., Yan X.S. Measurement of cardiovascular and pulmonary function endpoints and other physiological effects following partial or complete substitution of cigarettes with electronic cigarettes in adult smokers. Regul Toxicol Pharmacol 2017; 87: 36-53, doi: 10.1016/j.yrtph.2017.05.002
20. Moazed F., Burnham E.L., Vandivier R.W., et al. Cigarette smokers have exaggerated alveolar barrier disruption in response to lipopolysaccharide inhalation. Thorax 2016; 71: 1130-1136, doi: 10.1136/thoraxjnl-2015-207886
21. Viswam D., Trotter S., Burge P.S., Walters G.I. Respiratory failure caused by lipoid pneumonia from vaping e-cigarettes. BMJ Case Rep 2018; 2018: bcr-2018-224350, doi: 10.1136/bcr-2018-224350
22. Thota D., Latham E. Case report of electronic cigarettes possibly associated with eosinophilic pneumonitis in a previously healthy active-duty sailor. J Emerg Med 2014; 47: 15-17, doi: 10.1016/j.jemermed.2013.09.034
23. Agustin M., Yamamoto M., Cabrera F., Eusebio R. Diffuse Alveolar Hemorrhage Induced by Vaping. Case Rep Pulmonol 2018; 2018: 9724530. doi: 10.1155/2018/9724530
24. Khan M.S., Khateeb F., Akhtar J., et al. Organizing pneumonia related to electronic cigarette use: A case report and review of literature. Clin Respir J 2018; 12: 1295-1299, doi: 10.1111/crj.12775
25. Flower M., Nandakumar L., Singh M., Wyld D., Windsor M., Fielding D. Respiratory bronchiolitis-associated interstitial lung disease secondary to electronic nicotine delivery system use confirmed with open lung biopsy. Respirol Case Rep 2017; 5: e00230, doi: 10.1002/rcr2.230
26. Sommerfeld C.G., Weiner D.J., Nowalk A., Larkin A. Hypersensitivity Pneumonitis and Acute Respiratory Distress Syndrome from E-Cigarette Use. Pediatrics 2018; 141: e20163927, doi: 10.1542/peds.2016-3927
27. Staudt M.R., Salit J., Kaner R.J., Hollmann C., Crystal R.G. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir Res 2018; 19: 78. doi: 10.1186/s12931-018-0778-z
28. Dicpinigaitis P.V., Lee Chang A., Dicpinigaitis A.J., Negassa A. Effect of e-Cigarette Use on Cough Reflex Sensitivity. Chest 2016; 149: 161-165, doi: 10.1378/chest.15-0817
29. Carson J.L., Zhou L., Brighton L., et al. Temporal structure/function variation in cultured differentiated human nasal epithelium associated with acute single exposure to tobacco smoke or E-cigarette vapor. Inhal Toxicol 2017; 29: 137-144, doi: 10.1080/08958378.2017.1318985
30. Law S.M., Gray R.D. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm (Lond) 2017; 14:29, doi: 10.1186/s12950-017-0176-1
31. Reidel B., Radicioni G., Clapp P.W., et al. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med 2018; 197: 492-501, doi: 10.1164/rccm.201708-1590OC
32. Clapp P.W., Pawlak E.A., Lackey J.T., et al. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol Lung Cell Mol Physiol 2017; 313: L278-92, doi: 10.1152/ajplung.00452.2016
33. Scott A., Lugg S.T., Aldridge K., et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 2018; 73: 1161-1169, doi: 10.1136/thoraxjnl-2018-211663
34. Higham A., Rattray N.J., Dewhurst J.A., et al. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir Res 2016; 17: 56, doi: 10.1186/s12931-016-0368-x
35. Bessac B.F., Jordt S.E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 2008; 23: 360-370, doi: 10.1152/physiol.00026.2008
36. Schweitzer K.S., Chen S.X., Law S., et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol 2015; 309: L175-187, doi: 10.1152/ajplung.00411.2014
37. Yaucher N.E., Fish J.T., Smith H.W., Wells J.A. Propylene glycol-associated renal toxicity from lorazepam infusion. Pharmacotherapy 2003; 23: 1094-1099, doi: 10.1592/phco.23.10.1094.32762
38. Blake D.A., Whikehart D.R., Yu H., Vogel T., Roberts D.D. Common cryopreservation media deplete corneal endothelial cell plasma membrane Na+,K+ ATPase activity. Curr Eye Res 1996; 15: 263-271, doi: 10.3109/02713689609007620
39. Morshed K.M., Jain S.K., McMartin K.E. Acute toxicity of propylene glycol: an assessment using cultured proximal tubule cells of human origin. Fundam Appl Toxicol 1994; 23: 38-43, doi: 10.1006/faat.1994.1076
40. Dalton P., Soreth B., Maute C., Novaleski C., Banton M. Lack of respiratory and ocular effects following acute propylene glycol exposure in healthy humans. Inhal Toxicol 2018; 30: 124-132, doi: 10.1080/08958378.2018.147020
41. Niedermirtl F., Eberhardt M., Namer B., et al. Etomidate and propylene glycol activate nociceptive TRP ion channels. Mol Pain 2018; 14: 1744806918811699, doi: 10.1177/1744806918811699
42. Caceres A.I., Brackmann M., Elia M.D., et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A 2009; 106: 9099-9104, doi: 10.1073/pnas.0900591106
43. Madeira A., Moura T.F., Soveral G. Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 2015; 72: 759-771. doi: 10.1007/s00018-014-1773-2
44. Pocivavsek L., Gavrilov K., Cao K.D., et al. Glycerol-induced membrane stiffening: the role of viscous fluid adlayers. Biophys J 2011; 101: 118-127, doi: 10.1016/j.bpj.2011.05.036
45. Conti-Fine B.M., Navaneetham D., Lei S., Maus A.D. Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol 2000; 393: 279-294, doi: 10.1016/S0014-2999(00)00036-4
46. Maouche K., Medjber K., Zahm J.M., et al. Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure. Proc Natl Acad Sci U S A 2013; 110: 4099-4104, doi: 10.1073/pnas.1216939110
47. Ahmad S., Zafar I., Mariappan N., et al. Acute pulmonary effects of aerosolized nicotine. Am J Physiol Lung Cell Mol Physiol 2019; 316: L94-104, doi: 10.1152/ajplung.00564.2017
48. Egleton R.D., Brown K.C., Dasgupta P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci 2008; 29: 151-158, doi: 10.1016/j.tips.2007.12.006
49. Saccone N.L., Wang J.C., Breslau N., et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 2009; 69: 6848-6856, doi: 10.1158/0008-5472.CAN-09-0786
50. Hung R.J., McKay J.D., Gaborieau V., et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633-637, doi: 10.1038/nature06885
51. Paleari L., Catassi A., Ciarlo M., et al. Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. Cell Prolif 2008; 41: 936-959, doi: 10.1111/j.1365-2184.2008.00566.x
52. Klager S., Vallarino J., MacNaughton P., Christiani D.C., Lu Q., Allen J.G. Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environ Sci Technol 2017; 51: 10806-10813, doi: 10.1021/acs.est.7b02205
53. Sassano M.F., Davis E.S., Keating J.E., et al. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol 2018; 16: e2003904, doi: 10.1371/journal.pbio.2003904
54. Allen J.G., Flanigan S.S., LeBlanc M., et al. Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes. Environ Health Perspect 2016;124:733-739, doi: 10.1289/ehp.1510185
55. Erythropel H.C., Jabba S.V., DeWinter T.M., et al. Formation of flavorant-propylene Glycol Adducts with Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine Tob Res 2019; 21: 1248-1258, doi: 10.1093/ntr/nty192