Authors
Lukyanenko N. V.
Doctor of Medicine, Professor, Chair for Epidemiology, Microbiology and Virology1
Sursyakova K. I.
MD, PhD, Assistant Professor, Chair for Epidemiology, Microbiology and Virology1
Safyanova T. V.
Doctor of Medicine, Head, Chair for Epidemiology, Microbiology and Virology1
Prokopyev V. V.
MD, PhD, Assistant Professor, Chair for Epidemiology, Microbiology and Virology1
Russkikh A. A.
Lecturer, Chair for Epidemiology, Microbiology and Virology1
1 - Altai State Medical University of the Ministry of Health of the Russian Federation, Barnaul, Russian Federation
Corresponding Author
Sursyakova Ksenia Ivanovna; e-mail: boydika@yandex.ru
Conflict of interest
None declared.
Funding
The study had no sponsorship.
Abstract
Introduction: In recent decades, Russia, like the rest of the world, has seen a rapid increase in antimicrobial resistance (AMR) among pathogens causing infectious diseases. The development of drug resistance leads to microorganisms' ability to survive despite the use of etiotropic therapy. Alongside multidrug resistance (MDR), hypervirulence – associated with the acquisition of additional genetic material and the emergence of new genetic lineages – is becoming increasingly significant. The purpose of the study: To conduct a comparative phenotypic and genotypic assessment of the main pathogens causing healthcare-associated infections (HAIs) isolated from patients in a large multidisciplinary hospital. Materials and methods: The study involved whole-genome sequencing of 50 multidrug-resistant (MDR) strains isolated from patients with HAIs in a major multidisciplinary healthcare facility. The sample included 40 K. pneumoniae strains, 8 A. baumannii strains, and 2 P. aeruginosa strains obtained from clinical specimens in a multidisciplinary hospital. Pure cultures were isolated using bacteriological methods with blood agar and selective media – MacConkey agar (BioMerieux, France) and Levin agar (OXOID, UK). Antibiotic resistance was determined using the disk diffusion method. The results of the study and their discussion. The study found that A. baumannii most frequently caused HAIs in the form of systemic infections (50% of cases), which was 20.6% less than K. pneumoniae. Genotypic analysis of A. baumannii revealed the presence of acquired carbapenemase genes, including: OXA-48 (14.2%), OXA-23 (42.8%), OXA-40 (14.2%) and extended-spectrum beta-lactamase (ESBL) genes of the CTX-M group (28.8%). For K. pneumoniae, the following resistance genes were identified: Metallo-beta-lactamases (MBLs) of the NDM group (14.6%), Carbapenemases of the OXA-48-like group (44.1%), ESBL genes of the CTX-M group (41.3%). Conclusions: The comparative data on the genotypic resistance of K. pneumoniae and A. baumannii strains in a large regional healthcare facility highlight the clinical and epidemiological aspects of hospital-acquired strain formation. These findings help clinicians and epidemiologists identify high-risk groups for HAIs, adjust treatment regimens, improve preventive and infection control measures, and predict the emergence and spread of hospital-resistant strains.
Key words
healthcare-associated infections, genotypic resistance, risk factors, antibiotic resistance, resistance genes
DOI
References
1. Barancevich E.P. Produkciya karbapenemaz nozokomial'nymi shtammami K. Pneumoniae v Sankt-Peterburge. [Production of Carbapenemases in Klebsiella Pneumoniae Isolated in Saint-Petersburg.] Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy] 2016; 18(3): 196-199 (In Russ.)
2. Bocharova, Yu.A., Savinova T.A., Chebotar' I.V. Hromosomnye geny ESKAPE-patogenov, mutacii v kotoryh induciruyut antibiotikorezistentnost'. [Antimicrobial Resistance-Associated Mutations in Chromosomal Genes of Eskape Pathogens.] Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy] 2023; 25(2): 187-201, doi: 10.36488/cmac.2023.2.187-201 (In Russ.)
3. Bocharova Yu. A. Molekulyarno-geneticheskie mekhanizmy ustojchivosti P. aeruginosa k antibiotikam gruppy karbapenemov. [Molecular genetic mechanisms of P. aeruginosa resistance to carbapenem antibiotics.] Avtoref. diss. na soiskanie uchenoj stepeni k.m.n. [Author’s Abstract, PhD Thesis.] Moscow, 2018. (In Russ.)
4. Lazareva A.V., Tchebotar I.V., Kryzhanovskaya O.A., Tchebotar V.I., Mayanskiy N.A. P. aeruginosa: patogennost', patogenez i patologiya. [Pseudomonas Aeruginosa: Pathogenicity, Pathogenesis and Diseases.] Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy] 2015; 17(3): 170-186. (In Russ.)
5. Lazareva, I.V., Ageevec V.A., Ershova T.A., Zueva L.P., Goncharov A.E., Dar'ina M.G., Svetlichnaya Yu.S., Uskov A.N., Sidorenko S.V. Rasprostranenie i antibakterial'naya rezistentnost' gramotricatel'nyh bakterij, producentov karbapenemaz, v Sankt-Peterburge i nekotoryh drugih regionah Rossijskoj Federacii. [Prevalence and Antibiotic Resistance of Carbapenemase-Producing Gram-Negative Bacteria in Saint Petersburg and Some Other Regions of the Russian Federation.] Antibiotiki i himioterapiya [Antibiotics and Chemotherapy] 2016; 61(11-12): 28-38. (In Russ.)
6. Metodicheskie ukazaniya MUK 4.2.1890-04 «Opredelenie chuvstvitel'nosti mikroorganizmov k antibakterial'nym preparatam». [Methodological guidelines MUK 4.2.1890-04 «Determination of the sensitivity of microorganisms to antibacterial drugs.»] Moscow: Rospotrebnadzor, 2004. (In Russ.).
7. Orlova O. A., Semenenko T. A., Akimkin V. G. Sravnitel'nyj analiz effektivnosti ispol'zovaniya bakteriologicheskih i molekulyarno-biologicheskih metodov dlya ocenki mikrobnoj obsemenennosti ob«ektov vnutribol'nichnoj sredy. [Comparative Analysis of Efficiency of Bacteriological and Molecular-Biological Methods for the Assessment of Microbial Contamination of Hospital Environment Objects.] Zhurnal mikrobiologii, epidemiologii i immunobiologii [Journal of Microbiology, Epidemiology, Immunobiology] 2019; (4): 73-78. (In Russ.)
8. Priputnevich T.V., Lyubasovskaya L.A., Trofimov D.Yu., Donnikov A.E., Bystrickij A.A. Mesto molekulyarno-geneticheskih metodov v monitoringe i diagnostike opportunisticheskih infekcij, v tom chisle svyazannyh s okazaniem medicinskoj pomoshchi, u pacientov neonatal'nogo i akushersko-ginekologicheskogo profilya. [Molecular Genetic Methods as a Key-Point of Monitoring and Diagnostics of Opportunisctic Infections Including Nosocomial Among Neonatal and Ob-Gyn Patients.] Akusherstvo i ginekologiya. Novosti. Mneniya. Obuchenie. [Obstetrics and Gynecology. News. Views. Education] 2020; 8(1): 53-61. (In Russ.)
9. Rekomendacii Evropejskogo komiteta EUCAST po opredeleniyu chuvstvitel'nosti k antimikrobnym preparatam [Recommendations of the European EUCAST Committee on determining sensitivity to antimicrobial drugs.] Available at: https://www.antibiotic.ru/library/eucast-disk-diffusion-manual-8-0-rus/ (Assessed: 01.07.2024). (In Russ.)
10. Rubcova M.Yu., Ulyashova M.M., Bahman T.T., Shmid R.D., Egorov A.M. Mul'tiparametricheskoe opredelenie genov i tochechnyh mutacij v nih dlya identifikacii beta-laktamaz. [Multiparametric determination of genes and point mutations in them for the identification of beta-lactamases.] Uspekhi biologicheskoj himii [Biochemistry (Moscow)] 2010: 50: 303-348. (In Russ.)
11. Slukin P.V., Lev A.I., Astashkin E.I., Svetoch E.A., Fursova N.K. Sozdanie bazy dannyh klinicheskih shtammov gramotricatel'nyh bakterij dlya izucheniya molekulyarnyh mekhanizmov antibiotikorezistentnosti. [The Gram-Negative Bacterial Clinical Strains Database for Studying of Antibacterial Resistance Molecular Mechanisms.] Bakteriologiya [Bacteriology] 2018; 3(1): 26–32. (In Russ.)
12. Farmakologiya s recepturoj: uchebnik dlya medicinskih i farmacevticheskih uchrezhdenij srednego professional'nogo obrazovaniya. Pod red. V. M. Vinogradova. 6-e izd., ispr. i dop. [Pharmacology with a prescription: a textbook for medical and pharmaceutical institutions of secondary vocational education. Edited by V. M. Vinogradov. 6th ed.] Sankt-Peterburg: SpecLit, 2016. (In Russ.)
13. Hohlova O.E., Larionova I.A., Per'yanova O.V., Kozlov R.S., Ejdel'shtejn M.V., Modestov A.A., Eremeeva O.G., Lazareva I.V., Akusheva D.N., Lobova T.I., Potkina N.K., Sidorenko S.V., Yamamoto T. Mekhanizmy antibiotikorezistentnosti osnovnyh vozbuditelej gnojno-septicheskih oslozhnenij u onkologicheskih bol'nyh. [The Mechanisms of Antibiotic Resistance in Major Pathogens of Purulent-Inflammatory Complications in Cancer Patients] Infekciya i immunitet [Russian Journal of Infection and Immunity] 2021; 11(2): 324-336. (In Russ.)
14. Ejdel'shtejn M.V. Beta-laktamazy aerobnyh gramotricatel'nyh bakterij: harakteristika, osnovnye principy klassifikacii, sovremennye metody vyyavleniya i tipirovaniya [Beta-lactamases of aerobic gram-negative bacteria: characteristics, basic principles of classification, modern methods of detection and typing.] Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy] 2001; 3(3): 223-242. (In Russ.)
15. Ejdel'shtejn M.V. Ekstremal'no- i panrezistentnye klony bakterial'nyh vozbuditelej v klinike. Materialy ezhegodnoj Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem »Kontrol' i profilaktika infekcij, svyazannyh s okazaniem medicinskoj pomoshchi (ISMP-2015) Moskva 23-24 noyabrya 2015 goda«. [Extreme and pan-resistant clones of bacterial pathogens in the clinic. Materials of the annual All-Russian Scientific and practical conference with international participation »Control and prevention of infections related to medical care (IMS-2015). Moscow, November 23-24, 2015«.] MediAl 2015; (3): 32-108(In Russ.)
16. Alcock B.P., Raphenya A.R., Lau T.T.Y., et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research 2020; 48(D1): D517-D525, doi: 10.1093/nar/gkz935
17. Falagas M.E., Lourida P., Poulikakos P., Rafailidis P.I., Tansarli G.S. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 2014; 58(2): 654-663, doi: 10.1128/AAC.01222-13
18. Borges C.A., de Cássia de Andrade M.R., Vieira M.A., Souza L.A. C. Multidrug resistance genes, including blaKPC and blaCTX–M-2, among K. pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 2012; 45(5): 572-578, doi: 10.1590/s0037-86822012000500007
19. Nordmann P., Poirel L., Walsh T.R., Livermore D.M. The emerging NDM carbapenemases. Trends Microbiol 2011; 19(12): 588-59, doi: 10.1016/j.tim.2011.09.005
20. Monaco M., Giani T., Raffone M., et al. Colistin resistance superimposed to endemic carbapenemresistant K. pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill 2014; 19(42): 2093, doi: 10.2807/1560-7917.es2014.19.42.20939
21. Yamamoto M., Pop-Vicas A.E. Treatment for infections with carbapenem-resistant Enterobacteriaceae: what options do we still have? Critical Care 2014; 18(3): 229, doi: 10.1186/cc13949